📚 Bibliography#
Jaap H. Abbring and Øystein Daljord. Identifying the discount factor in dynamic discrete choice models. Quantitative Economics, 11(2):471–501, 2020. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/QE1352. URL: https://onlinelibrary.wiley.com/doi/abs/10.3982/QE1352 (visited on 2022-01-08), doi:10.3982/QE1352 .
Jerome Adda and Russell W. Cooper. Dynamic Economics: Quantitative Methods and Applications. MIT Press, Cambridge, MA, USA, May 2023. ISBN 978-0-262-54788-8. URL: https://mitpress.mit.edu/9780262547888/dynamic-economics .
Victor Aguirregabiria and Mathieu Marcoux. Imposing equilibrium restrictions in the estimation of dynamic discrete games. Quantitative Economics, 12(4):1223–1271, October 2021. doi:10.3982/TE1600 .
Victor Aguirregabiria and Pedro Mira. Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models. Econometrica, 70(4):1519–1543, July 2002. doi:10.1111/1468-0262.00340 .
Victor Aguirregabiria and Pedro Mira. Sequential Estimation of Dynamic Discrete Games. Econometrica, 75(1):1–53, January 2007. doi:10.1111/j.1468-0262.2007.00731.x .
Victor Aguirregabiria and Pedro Mira. Dynamic discrete choice structural models: A survey. Journal of Econometrics, 156(1):38–67, May 2010. doi:10.1016/j.jeconom.2009.09.007 .
Sumru Altuğ and Robert A. Miller. The effect of work experience on female wages and labour supply. The Review of Economic Studies, 65(1):45–85, 1998. Publisher: Wiley-Blackwell. URL: https://academic.oup.com/restud/article-abstract/65/1/45/1589921 (visited on 2025-09-08).
Peter Arcidiacono and Robert A. Miller. Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity. Econometrica, 79(6):1823–1867, 2011. doi:10.3982/ECTA7743 .
Peter Arcidiacono and Robert A. Miller. Nonstationary dynamic models with finite dependence. Quantitative Economics, 10(3):853–890, 2019. doi:10.3982/QE626 .
Patrick Bajari, C. Lanier Benkard, and Jonathan Levin. Estimating Dynamic Models of Imperfect Competition. Econometrica, 2007. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2007.00796.x (visited on 2021-11-03), doi:10.1111/j.1468-0262.2007.00796.x .
Ron N. Borkovsky, Ulrich Doraszelski, and Yaroslav Kryukov. A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method. Operations Research, September 2008. Publisher: Carnegie Mellon University. URL: https://kilthub.cmu.edu/articles/journal_contribution/A_User_s_Guide_to_Solving_Dynamic_Stochastic_Games_Using_the_Homotopy_Method/6703373/1 (visited on 2022-11-22), doi:10.1184/R1/6703373.v1 .
Adam Dearing and Jason R Blevins. Efficient and Convergent Sequential Pseudo-Likelihood Estimation of Dynamic Discrete Games. The Review of Economic Studies, 92(2):981–1021, March 2025. URL: https://doi.org/10.1093/restud/rdae050 (visited on 2025-06-26), doi:10.1093/restud/rdae050 .
Ulrich Doraszelski and Juan F. Escobar. A theory of regular Markov perfect equilibria in dynamic stochastic games: Genericity, stability, and purification. Theoretical Economics, 5(3):369–402, 2010. doi:10.3982/TE632 .
Michael Egesdal, Zhenyu Lai, and Che-Lin Su. Estimating dynamic discrete-choice games of incomplete information. Quantitative Economics, 6(3):567–597, 2015. doi:10.3982/QE430 .
Richard Ericson and Ariel Pakes. Markov-Perfect Industry Dynamics: A Framework for Empirical Work. The Review of Economic Studies, 62(1):53–82, 1995. doi:10.2307/2297841 .
Kenneth Gillingham, Fedor Iskhakov, Anders Munk-Nielsen, John Rust, and Bertel Schjerning. Equilibrium Trade in Automobiles. Journal of Political Economy, 130(10):2534–2593, October 2022. doi:10.1086/720463 .
V. Joseph Hotz and Robert A. Miller. Conditional Choice Probabilities and the Estimation of Dynamic Models. The Review of Economic Studies, 60(3):497, July 1993. doi:10.2307/2298122 .
V. Joseph Hotz, Robert A. Miller, Seth Sanders, and Jeffrey Smith. A simulation estimator for dynamic models of discrete choice. The Review of Economic Studies, 61(2):265–289, 1994. Publisher: Wiley-Blackwell.
Fedor Iskhakov, Thomas Jørgensen, John Rust, and Bertel Schjerning. The endogenous grid method for discrete-continuous dynamic choice models with (or without) taste shocks. Quantitative Economics, 8(2):317–365, 2017. doi:https://doi.org/10.3982/QE643 .
Fedor Iskhakov, Dennis Kristensen, John Rust, and Bertel Schjerning. Structural estimation of dynamic directional games with multiple equilibria. (work in progress).
Fedor Iskhakov, Jinhyuk Lee, John Rust, Bertel Schjerning, and Kyoungwon Seo. Constrained optimization approaches to estimation of structural models: Comment. Econometrica, 84(1):365–370, January 2016. doi:10.3982/ECTA12605 .
Fedor Iskhakov, John Rust, and Bertel Schjerning. Recursive lexicographical search: Finding all markov perfect equilibria of finite state directional dynamic games. The Review of Economic Studies, 83(2):658–703, 2016. doi:10.1093/restud/rdv046 .
Fedor Iskhakov, John Rust, and Bertel Schjerning. The dynamics of Bertrand price competition with cost-reducing investments. International Economic Review, 59(4):1681–1731, 2018. doi:10.1111/iere.12317 .
Panle Jia. What Happens When Wal-Mart Comes to Town: An Empirical Analysis of the Discount Retailing Industry. Econometrica, 76(6):1263–1316, 2008. Publisher: [Wiley, Econometric Society].
Kenneth Judd, Philipp Renner, and Karl Schmedders. Finding All Pure-Strategy Equilibria in Games with Continuous Strategies. Quantitative Economics, 3:289, July 2012. doi:10.3982/QE165 .
Myrto Kalouptsidi, Paul T. Scott, and Eduardo Souza-Rodrigues. Identification of counterfactuals in dynamic discrete choice models. Quantitative Economics, 12(2):351–403, 2021. doi:10.3982/QE1253 .
R. Duncan Luce. Individual choice behavior. Individual choice behavior. John Wiley, Oxford, England, 1959. Pages: xii, 153.
Qingyin Ma and John Stachurski. Dynamic Programming Deconstructed: Transformations of the Bellman Equation and Computational Efficiency. Operations Research, 69(5):1591–1607, September 2021. doi:10.1287/opre.2020.2006 .
Jakob Marschak. Binary Choice Constraints and Random Utility Indicators. In Kenneth Arrow, Samuel Karlin, and Patrick Suppes, editors, Mathematical methods in the social sciences, 1959 : proceedings, volume viii of Stanford Symposium on Mathematical Methods in the Social Sciences. Stanford University (1959). Stanford, CA. : Stanford University Press, 1960. URL: http://archive.org/details/mathematicalmeth0000stan .
Eric Maskin and Jean Tirole. A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and Edgeworth Cycles. Econometrica, 56(3):571–599, 1988. Publisher: [Wiley, Econometric Society]. doi:10.2307/1911701 .
Eric Maskin and Jean Tirole. A Theory of Dynamic Oligopoly, I: Overview and Quantity Competition with Large Fixed Costs. Econometrica, 56(3):549–569, 1988. Publisher: [Wiley, Econometric Society]. doi:10.2307/1911700 .
Eric Maskin and Jean Tirole. Markov Perfect Equilibrium: I. Observable Actions. Journal of Economic Theory, 100(2):191–219, October 2001. doi:10.1006/jeth.2000.2785 .
Daniel McFadden. Conditional logit analysis of qualitative choice behavior. Frontiers in econometrics, 1974.
Daniel McFadden. Econometric models of probabilistic choice. Structural analysis of discrete data with econometric applications, 1981.
Ariel Pakes and Paul McGuire. Computing Markov-Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model. The RAND Journal of Economics, 25(4):555–589, 1994. Publisher: [RAND Corporation, Wiley]. URL: https://www.jstor.org/stable/2555975 (visited on 2021-11-17), doi:10.2307/2555975 .
Ariel Pakes, Michael Ostrovsky, and Steven Berry. Simple estimators for the parameters of discrete dynamic games (with entry/exit examples). The RAND Journal of Economics, 2007. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1756-2171.2007.tb00073.x (visited on 2021-11-17), doi:10.1111/j.1756-2171.2007.tb00073.x .
Martin Pesendorfer and Philipp Schmidt-Dengler. Asymptotic Least Squares Estimators for Dynamic Games -super-1. The Review of Economic Studies, 75(3):901–928, 2008. Publisher: Review of Economic Studies Ltd. URL: https://econpapers.repec.org/scripts/a/abstract.pf?h=RePEc:oup:restud:v:75:y:2008:i:3:p:901-928;terms=Least%20Squares%20Estimators%20of%20Dynamic%20Games (visited on 2024-06-07).
Martin Pesendorfer and Philipp Schmidt-Dengler. Sequential Estimation of Dynamic Discrete Games: A Comment. Econometrica, 78(2):833–842, 2010. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA7633. URL: https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA7633 (visited on 2025-09-10), doi:10.3982/ECTA7633 .
John Rust. Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher. Econometrica, 55(5):999, September 1987. doi:10.2307/1911259 .
John Rust. Dynamic programming. In The new palgrave dictionary of economics, pages 1–26. Palgrave Macmillan UK, London, 2016. doi:10.1057/978-1-349-95121-5₁932-1 .
Che-Lin Su. Estimating discrete-choice games of incomplete information: Simple static examples. Quantitative Marketing and Economics, 12(2):167–207, June 2014. doi:10.1007/s11129-014-9144-8 .
Che-Lin Su and Kenneth L. Judd. Constrained Optimization Approaches to Estimation of Structural Models. Econometrica, 80(5):2213–2230, 2012. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA7925. URL: https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA7925 (visited on 2021-11-19), doi:10.3982/ECTA7925 .
Louis L. Thurstone. The measurement of values. The measurement of values. Univer. Chicago Press, Oxford, England, 1959. Pages: vii, 322.
Otto Toivanen and Michael Waterson. Empirical research on discrete choice game theory models of entry: An illustration. European Economic Review, 44(4):985–992, May 2000. doi:10.1016/S0014-2921(99)00057-4 .
Otto Toivanen and Michael Waterson. Market Structure and Entry: Where's the Beef? The RAND Journal of Economics, 36(3):680–699, 2005. Publisher: [RAND Corporation, Wiley]. URL: https://www.jstor.org/stable/4135236 (visited on 2025-09-11).
Kenneth E. Train. Discrete Choice Methods with Simulation. Cambridge University Press, 2 edition, 2009. ISBN 978-0-521-76655-5. doi:10.1017/CBO9780511805271 .
Herbert S. Wilf. Algorithms and Complexity. A K Peters/CRC Press, Natick, 2002. ISBN 978-1-56881-178-9.