Some useful properties and formulas for random utility models with logit, nested logit, and ordered nested logit stochastic components

Victor Aguirregabiria*
University of Toronto

January 8, 2010

Abstract

Within the framework of discrete choice Random Utility Models (RUM) with additive stochastic components, this note reviews existing results on closed-form expressions for several key functions: the distribution of the maximum utility, the expected maximum utility, the choice probabilities, and the selection function. The analysis considers three different specifications for the distribution of the stochastic component: i.i.d. type I extreme value distribution, nested extreme value distribution, and ordered generalized extreme value distribution.

1 Random Utility Models

Consider a discrete choice Random Utility Model (RUM) with additive stochastic component. See McFadden (1974, 1981) for seminal descriptions of the RUM, and Anderson, De Palma, and Thisse, 1992) for a thorough analysis of these models containing some of the results in this note.

The optimal choice, a^* , is defined as:

$$a^* = \arg\max_{a \in \mathcal{A}} \ \{u_a + \varepsilon_a\} \tag{1}$$

where $\mathcal{A} = \{1, 2, ..., J\}$ is the set of feasible choice alternatives, $\mathbf{u} = (u_1, u_2, ..., u_J)$ is the vector with the deterministic component of the utility, and $\boldsymbol{\varepsilon} = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_J)$ is the vector

^{*}Department of Economics, University of Toronto. 150 St. George Street, Toronto, ON, M5S 3G7, Canada, victor.aguirregabiria@utoronto.ca.

with the stochastic component. The vector ε has a joint CDF G(.) that is continuous and strictly increasing with respect to the Lebesgue measure in the Euclidean space.

This note derives closed-form expressions for:

- 1. The probability distribution of the maximum utility, $\max_{a \in \mathcal{A}} \{u_a + \varepsilon_a\}$.
- 2. The expected maximum utility, $\mathbb{E}(\max_{a \in \mathcal{A}} \{u_a + \varepsilon_a\} | u)$.
- 3. The expected value of ε_a conditional on alternative a being optimal: $\mathbb{E}(\varepsilon_a \mid a^* = a)$.
- 4. The choice probabilities, $Pr(a^* = a | \mathbf{u})$,

under three different specifications for the distribution of the vector $\boldsymbol{\varepsilon}$:

- a. i.i.d. Type I Extreme Value distribution: multinomial logit RUM.
- b. i.i.d. nested Extreme Value distribution: nested logit RUM.
- c. i.i.d. Ordered Generalized Extreme Value distribution: OGEV RUM.

The following definitions and properties are used in the note.

Definition: A random variable X has a Type I Extreme Value distribution (also denoted Gumbel or Double Exponential distribution) with location parameter μ and dispersion parameter σ if its CDF is:

$$G(x) = \exp\left\{-\exp\left(-\left[\frac{x-\mu}{\sigma}\right]\right)\right\} \tag{2}$$

for any $x \in (-\infty, +\infty)$.

Definition: Maximum utility. Let v^* be the random variable that represents the maximum utility: $v^* \equiv \max_{a \in \mathcal{A}} \{u_a + \varepsilon_a\}$. This maximum utility is a random variable because it depends on the vector of random variables ε .

Definition: McFadden's Social Surplus function. The social surplus function $S(\mathbf{u})$ is the expected value of the maximum utility conditional on the vector of constants \mathbf{u} : $S(\mathbf{u}) \equiv \mathbb{E}(\max_{a \in \mathcal{A}} \{u_a + \varepsilon_a\} | u)$.

Definition: Conditional choice probabilities (CCPs). The conditional choice probability $P(a|\mathbf{u})$ is the probability that alternative a is the optimal choice: $P(a|\mathbf{u}) \equiv Pr(a^* = a|\mathbf{u})$. \blacksquare **Definition**: Conditional choice expected utilities (CCEU). The conditional choice expected utility $e(a,\mathbf{u})$ is the expected value of utility $u_a + \varepsilon_a$ conditional on the vector \mathbf{u} and on the event that alternative a is the optimal choice: $e(a,\mathbf{u}) \equiv \mathbb{E}(u_a + \varepsilon_a|\mathbf{u}, a^* = a)$. \blacksquare

Definition: Selection-bias function. The selection function $\lambda(a, \mathbf{u})$ is the expected value of the stochastic component of the utility, ε_a , conditional on the vector \mathbf{u} and on the event that alternative a is the optimal choice: $\lambda(a, \mathbf{u}) \equiv \mathbb{E}(\varepsilon_a | \mathbf{u}, a^* = a)$.

2 Williams-Daly-Zachary Theorem

Williams-Daly-Zachary (WDZ) Theorem is an important property of discrete choice RUM with additive stochastic component. It is the discrete-choice version of Roy's Identity in consumer theory. I use this property in several parts of this note. I include here an enunciation of the Theorem and a simple proof.

Williams-Daly-Zachary (WDZ) Theorem. For any choice alternative $a \in A$, the CCP $P(a|\mathbf{u})$ can be obtained as the partial derivative of the surplus function $S(\mathbf{u})$ with respect to utility u(a):

$$P(a|\mathbf{u}) = \frac{\partial S(\mathbf{u})}{\partial u_a} \qquad \blacksquare \tag{3}$$

Proof: By definition of $S(\mathbf{u})$, we have that:

$$\frac{\partial S(\mathbf{u})}{\partial u_a} = \frac{\partial}{\partial u_a} \int \max_{j \in \mathcal{A}} \left\{ u_j + \varepsilon_j \right\} \ dG(\boldsymbol{\varepsilon}) \tag{4}$$

Given the conditions on the CDF of ε , we can move the partial derivative inside the integral such that:

$$\frac{\partial S(\mathbf{u})}{\partial u_a} = \int \frac{\partial \max_{j \in \mathcal{A}} \{u_j + \varepsilon_j\}}{\partial u_a} dG(\varepsilon)$$

$$= \int 1\{u_a + \varepsilon_a \ge u_j + \varepsilon_j, \ \forall j \in \mathcal{A}\} dG(\varepsilon)$$

$$= P(a|\mathbf{u}) \tag{5}$$

where $1\{.\}$ is the indicator function.

3 Multinomial logit (MNL)

Suppose that the random variables in the vector ε are i.i.d. with Type I Extreme Value distribution with a location parameter $\mu = 0$ and unrestricted dispersion parameter σ . That is, for every alternative $a \in \mathcal{A}$, the CDF of ε_a is $G(\varepsilon_a) = \exp\left\{-\exp\left(-\frac{\varepsilon_a}{\sigma}\right)\right\}$.

3.1 Distribution of the maximum utility

The maximum utility v^* is a random variable because it depends on the vector of random variables ε . By definition, the cumulative probability distribution of v^* is:

$$F_{v^*}(v) \equiv \Pr(v^* \le v) = \prod_{a \in \mathcal{A}} \Pr(u_a + \varepsilon_a \le v)$$

$$= \prod_{a \in \mathcal{A}} \exp\left\{-\exp\left(-\frac{v - u_a}{\sigma}\right)\right\}$$

$$= \exp\left\{-\exp\left(-\frac{v}{\sigma}\right)U\right\}$$
(6)

where $U \equiv \sum_{a \in \mathcal{A}} \exp\left(\frac{u_a}{\sigma}\right)$. We can also write this expression as:

$$F_{v^*}(v) = \exp\left\{-\exp\left(-\frac{v - \sigma \ln U}{\sigma}\right)\right\} \tag{7}$$

This expression shows that the maximum utility v^* is a double exponential random variable with dispersion parameter σ and location parameter σ ln U. Therefore, the maximum of a vector of i.i.d. double exponential random variables is also a double exponential random variable. This is the reason why this family of random variables is also called "extreme value". The density function of v^* is:

$$f_{v^*}(v) \equiv H'(v) = F_{v^*}(v) \frac{U}{\sigma} \exp\left(-\frac{v}{\sigma}\right)$$
 (8)

3.2 Expected maximum utility

By definition, $S(\mathbf{u}) = \mathbb{E}(v^*|\mathbf{u})$. Therefore,

$$S(\mathbf{u}) = \int v^* h(v^*) dv^* = \int v^* \exp\left\{-\exp\left(-\frac{v^*}{\sigma}\right)U\right\} \frac{U}{\sigma} \exp\left(-\frac{v^*}{\sigma}\right) dv^* \qquad (9)$$

Applying the change in variable $z = \exp(-v^*/\sigma)$, such that $v^* = -\sigma \ln(z)$, and $dv^* = -\sigma(dz/z)$, we have:

$$S(\mathbf{u}) = \int_{+\infty}^{0} -\sigma \ln(z) \exp \{-z \ U\} \frac{U}{\sigma} z \left(-\sigma \frac{dz}{z}\right)$$

$$= -\sigma U \int_{0}^{+\infty} \ln(z) \exp \{-z \ U\} dz$$
(10)

Using Laplace transformation we have that $\int_0^{+\infty} \ln(z) \exp\{-z \ U\} \ dz = \frac{\ln(U) + \gamma}{U}$, where γ is Euler's constant. Therefore, the expected maximum utility is:

$$S(\mathbf{u}) = \sigma U \left(\frac{\ln(U) + \gamma}{U}\right) = \sigma \left(\ln(U) + \gamma\right) \tag{11}$$

3.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, the optimal choice probabilities can be obtained by differentiating the surplus function. Therefore, for the MNL model,

$$P(a|\mathbf{u}) = \sigma \frac{\partial \ln(U)}{\partial u_a} = \sigma \frac{\partial U}{\partial u_a} \frac{1}{U}$$

$$= \exp\left(\frac{u_a}{\sigma}\right) \frac{1}{U} = \frac{\exp\left(u_a/\sigma\right)}{\sum_{i \in A} \exp\left(u_i/\sigma\right)}$$
(12)

3.4 Selection-Bias function

In this section, I derive the density function of ε_a conditional on the event $a^* = a$. I show that this conditional density has the following form:

$$f_{\varepsilon_a|a^*=a}(\varepsilon_a) = \exp\left\{-\left(\varepsilon_a - \ln P(a \mid \mathbf{u})\right) - \exp\left\{-\left(\varepsilon_a - \ln P(a \mid \mathbf{u})\right)\right\}\right\}$$
(13)

This is the density of a Type 1 Extreme Value random variable with location parameter $\mu = \ln P(a \mid \mathbf{u})$. By definition, the mean of this random variable is the selection-bias function and is equal to $\gamma - \ln P(a \mid \mathbf{u})$. I prove this result below.

The event $a^* = a$ is equivalent to $\varepsilon_j \leq \varepsilon_a + u_a - u_j$, $\forall j \neq a$. Therefore, the marginal conditional density $f(\varepsilon_a \mid a^* = a)$ is

$$f_{\varepsilon_a|a^*=a}(\varepsilon_a) = \frac{f(\varepsilon_a) \cdot \prod_{j \neq a} \Pr(\varepsilon_j \leq \varepsilon_a + u_a - u_j)}{\Pr(a^* = a)}$$
(14)

Replacing $f(\varepsilon_a)$ with the density of the Type 1 Extreme Value random variable, and replacing $\Pr(\varepsilon_j \leq \varepsilon_a + u_a - u_j)$ with its CDF evaluated at $\varepsilon_a + u_a - u_j$. we have:

$$f_{\varepsilon_{a}|a^{*}=a}(\varepsilon_{a}) = \frac{\exp(-\varepsilon_{a} - \exp(-\varepsilon_{a})) \cdot \prod_{j \neq a} \exp(-\exp(-(\varepsilon_{a} + u_{a} - u_{j})))}{P(a \mid \mathbf{u})}$$

$$= \frac{\exp(-\varepsilon_{a}) \cdot \prod_{j=1}^{J} \exp(-\exp(-(\varepsilon_{a} + u_{a} - u_{j})))}{P(a \mid \mathbf{u})}$$

$$= \frac{\exp(-\varepsilon_{a}) \cdot \exp(-\exp(-\varepsilon_{a}) \cdot \sum_{j=1}^{J} \exp(u_{j} - u_{a}))}{P(a \mid \mathbf{u})}$$
(15)

Define: $U = \sum_{j=1}^{J} \exp(u_j)$, so $P(a \mid \mathbf{u}) = \exp(u_a)/U$. Using this definition, we can rewrite the marginal conditional density $f(\varepsilon_a \mid a^* = a)$ as:

$$f_{\varepsilon_{a}\mid a^{*}=a}(\varepsilon_{a}) = \frac{\exp(-\varepsilon_{a}) \cdot \exp(-\exp(-\varepsilon_{a}) \cdot U/\exp(u_{a}))}{\exp(u_{a})/U}$$

$$= \exp\left\{-(\varepsilon_{a} - \ln P(a \mid \mathbf{u})) - \exp\left\{-(\varepsilon_{a} - \ln P(a \mid \mathbf{u}))\right\}\right\}$$
(16)

As mentioned above, this is the density of a Type 1 Extreme Value random variable with location parameter $\mu = \ln P(a \mid \mathbf{u})$. Therefore,

$$\lambda(a, \mathbf{u}) = \mathbb{E}(\varepsilon_a \mid \mathbf{u}, a^* = a) = \gamma - \log P(a \mid \mathbf{u})$$
(17)

4 Nested logit (NL)

Suppose that the random variables in the vector ε have the following joint CDF:

$$G(\boldsymbol{\varepsilon}) = \exp\left\{-\sum_{r=1}^{R} \left[\sum_{a \in \mathcal{A}_r} \exp\left(-\frac{\varepsilon_a}{\sigma_r}\right)\right]^{\frac{\sigma_r}{\delta}}\right\}$$
 (18)

where $\{A_1, A_2, ..., A_R\}$ is a partition of A, and δ , σ_1 , σ_2 , ..., σ_R are positive parameters, with $\delta \leq 1$.

4.1 Distribution of the Maximum Utility

Using the same approach as for the MNL model, we have:

$$F_{v^*}(v) \equiv \Pr(v^* \leq v) = \prod_{a \in \mathcal{A}} \Pr(u_a + \varepsilon_a \leq v, \forall a \in \mathcal{A})$$

$$= \prod_{a \in \mathcal{A}} \exp\left\{-\sum_{r=1}^R \left[\sum_{a \in A_r} \exp\left(-\frac{v - u_a}{\sigma_r}\right)\right]^{\frac{\sigma_r}{\delta}}\right\}$$

$$= \exp\left\{-\exp\left(-\frac{v}{\delta}\right) \sum_{r=1}^R \left[\sum_{a \in \mathcal{A}_r} \exp\left(\frac{u_a}{\sigma_r}\right)\right]^{\frac{\sigma_r}{\delta}}\right\}$$

$$= \exp\left\{-\exp\left(-\frac{v}{\delta}\right) U\right\}$$
(19)

where:

$$U \equiv \sum_{r=1}^{R} \left[\sum_{a \in \mathcal{A}_r} \exp\left(\frac{u_a}{\sigma_r}\right) \right]^{\frac{\sigma_r}{\delta}} = \sum_{r=1}^{R} U_r^{1/\delta}$$
 (20)

and

$$U_r \equiv \left[\sum_{a \in \mathcal{A}_r} \exp\left(\frac{u_a}{\sigma_r}\right) \right]^{\sigma_r} \tag{21}$$

The density function of v^* is:

$$f_{v^*}(v) \equiv H'(v) = F_{v^*}(v) \frac{U}{\delta} \exp\left(-\frac{v}{\delta}\right)$$
 (22)

4.2 Expected maximum utility

By definition, $S(\mathbf{u}) = \mathbb{E}(v^*)$. Therefore,

$$S(\mathbf{u}) = \int_{-\infty}^{+\infty} v^* h(v^*) dv^* = \int_{-\infty}^{+\infty} v^* \exp\left\{-\exp\left(-\frac{v^*}{\delta}\right) U\right\} \frac{U}{\delta} \exp\left(-\frac{v^*}{\delta}\right) dv^*$$
(23)

Let's apply the following change in variable: $z = \exp(-v^*/\delta)$, such that $v^* = -\delta \ln(z)$, and $dv^* = -\delta(dz/z)$. Then,

$$S(\mathbf{u}) = \int_{+\infty}^{0} -\delta \ln(z) \exp\left\{-z \ U\right\} \frac{U}{\delta} z \left(-\delta \frac{dz}{z}\right) = -\delta U \int_{+\infty}^{0} \ln(z) \exp\left\{-z \ U\right\} dz$$

$$(24)$$

And using Laplace transformation:

$$S(\mathbf{u}) = \delta U \left(\frac{\ln(U) + \gamma}{U} \right) = \delta \left(\ln(U) + \gamma \right)$$
 (25)

where γ is the Euler's constant.

4.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, choice probabilities can be obtained differentiating the surplus function. For the NL model:

$$P(a|\mathbf{u}) = \delta \frac{\partial \ln(U)}{\partial u_a} = \delta \frac{\partial U}{\partial u_a} \frac{1}{U} =$$

$$= \delta \frac{\sigma_{ra}}{\delta} \left[\sum_{j \in A_{ra}} \exp\left(\frac{u_j}{\sigma_{ra}}\right) \right]^{\frac{\sigma_{ra}}{\delta} - 1} \frac{1}{\sigma_{ra}} \exp\left(\frac{u_a}{\sigma_{ra}}\right) \frac{1}{U}$$

$$= \frac{\exp\left(u_a/\sigma_{ra}\right)}{\sum_{j \in A_{ra}} \exp\left(u_j/\sigma_{ra}\right)} \frac{\left[\sum_{j \in A_{ra}} \exp\left(u_j/\sigma_{ra}\right)\right]^{\frac{\sigma_{ra}}{\delta}}}{\sum_{r=1}^{R} \left[\sum_{j \in A_r} \exp\left(u_j/\sigma_{r}\right)\right]^{\frac{\sigma_{ra}}{\delta}}}$$
(26)

The first term is $q(a|r_a)$ (i.e., probability of choosing a given that we are in group A_{ra}), and the second term is $Q(r_a)$ (i.e., probability of selecting the group A_{ra}).

4.4 Conditional choice expected utilities

As shown in general, $e(a, \mathbf{u}) = S(\mathbf{u})$. This implies that $\mathbb{E}(\varepsilon_a \mid u, a^* = a) = S(\mathbf{u}) - u_a$. Given that for the NL model $S(\mathbf{u}) = \delta(\ln U + \gamma)$ we have that:

$$\mathbb{E}(\varepsilon_a|u, a^* = a) = \delta\gamma + \delta \ln U - u_a \tag{27}$$

4.5 Relationship between selection function and CCPs

To write $\mathbb{E}(\varepsilon_a|u, a^* = a)$ in terms of choice probabilities, note that from the definition of $q(a|r_a)$ and $Q(r_a)$, we have that:

$$\ln q(a|r_a) = \frac{u_a - \ln U_{ra}}{\sigma_{ra}} \Rightarrow \ln U_{ra} = u_a - \sigma_{ra} \ln q(a|r_a)$$
 (28)

and

$$\ln Q(r_a) = \frac{\ln U_{ra}}{\delta} - \ln U \Rightarrow \ln U = \frac{\ln U_{ra}}{\delta} - \ln Q(r_a)$$
 (29)

Combining these expressions, we have that:

$$\ln U = \frac{u_a - \sigma_{ra} \ln q(a|r_a)}{\delta} - \ln Q(r_a)$$
(30)

Therefore,

$$e_a = \delta \gamma + \delta \left(\frac{u_a - \sigma_{ra} \ln q(a|r_a)}{\delta} - \ln Q(r_a) \right) - u_a$$
$$= \delta \gamma - \sigma_{ra} \ln q(a|r_a) - \delta \ln Q(r_a)$$

5 Ordered GEV (OGEV)

Suppose that the random variables in the vector ε have the following joint CDF:

$$G(\varepsilon) = \exp\left\{-\sum_{r=1}^{J+M} \left[\sum_{a \in B_r} W_{r-a} \exp\left(-\frac{\varepsilon_a}{\sigma_r}\right)\right] \frac{\sigma_r}{\delta}\right\}$$
(31)

where:

- *M* is a positive integer;
- $\{B_1, B_2, ..., B_{J+M}\}$ are J+M subsets of A, with the following definition:

$$B_r = \{ a \in \mathcal{A} : r - M \le a \le r \} \tag{32}$$

For instance, if $A = \{1, 2, 3, 4, 5\}$ and M = 2, then $B_1 = \{1\}$, $B_2 = \{1, 2\}$, $B_3 = \{1, 2, 3\}$, $B_4 = \{2, 3, 4\}$, $B_5 = \{3, 4, 5\}$, $B_6 = \{4, 5\}$, and $B_7 = \{5\}$.

- δ , and $\sigma_1, \sigma_2, ..., \sigma_{J+M}$ are positive parameters, with $\delta \leq 1$;
- $W_0, W_1, ..., W_M$ are constants (weights) such that: $W_m \ge 0$, and $\sum_{m=0}^M W_m = 1$.

5.1 Distribution of the Maximum Utility

$$F_{v^*}(v) \equiv \Pr(v^* \le v) = \Pr(\varepsilon_a \le v - u_a : for \ any \ a \in \mathcal{A})$$

$$= \exp\left\{-\sum_{r=1}^{J+M} \left[\sum_{a \in B_r} W_{r-a} \exp\left(-\frac{v - u_a}{\sigma_r}\right)\right]^{\frac{\sigma_r}{\delta}}\right\}$$

$$= \exp\left\{-\exp\left(-\frac{v}{\delta}\right) \sum_{r=1}^{J+M} \left[\sum_{a \in B_r} W_{r-a} \exp\left(\frac{u_a}{\sigma_r}\right)\right]^{\frac{\sigma_r}{\delta}}\right\}$$

$$= \exp\left\{-\exp\left(-\frac{v}{\delta}\right) U\right\}$$
(33)

where:

$$U \equiv \sum_{r=1}^{J+M} \left[\sum_{a \in B_r} W_{r-a} \exp\left(\frac{u_a}{\sigma_r}\right) \right]^{\frac{\sigma_r}{\delta}} = \sum_{r=1}^{J+M} U_r^{1/\delta}$$
 (34)

where $U_r \equiv \left[\sum_{a \in B_r} W_{r-a} \exp\left(\frac{u_a}{\sigma_r}\right)\right]^{\sigma_r}$. The density function of v^* is:

$$f_{v^*}(v) \equiv H'(v) = F_{v^*}(v) \frac{U}{\delta} \exp\left(-\frac{v}{\delta}\right)$$
 (35)

5.2 Expected maximum utility

By definition, $S(\mathbf{u}) = \mathbb{E}(v^*|u)$. Therefore,

$$S(\mathbf{u}) = \int_{-\infty}^{+\infty} v^* \ h(v^*) \ dv^* = \int_{-\infty}^{+\infty} v^* \ \exp\left\{-\exp\left(-\frac{v^*}{\delta}\right)U\right\} \frac{U}{\delta} \exp\left(-\frac{v^*}{\delta}\right) \ dv^* \quad (36)$$

Let's apply the following change in variable: $z = \exp(-v^*/\delta)$, such that $v^* = -\delta \ln(z)$, and $dv^* = -\delta(dz/z)$. Then,

$$S = \int_{-\infty}^{0} -\delta \ln(z) \exp\left\{-z \ U\right\} \frac{U}{\delta} z \left(-\delta \frac{dz}{z}\right) = -\delta U \int_{0}^{+\infty} \ln(z) \exp\left\{-z \ U\right\} dz \quad (37)$$

And using Laplace transformation:

$$S = \delta U \left(\frac{\ln U + \gamma}{U} \right) = \delta (\ln U + \gamma) = \delta \gamma + \delta \ln \left[\sum_{r=1}^{J+M} \left[\sum_{a \in B_r} W_{r-a} \exp \left(\frac{u_a}{\sigma_r} \right) \right] \frac{\sigma_r}{\delta} \right]$$
(38)

where γ is the Euler's constant.

5.3 Choice probabilities

By Williams-Daly-Zachary (WDZ) theorem, choice probabilities can be obtained differentiating the surplus function.

$$P(a|u) = \frac{1}{U} \sum_{r=a}^{a+M} \left[\sum_{j \in B_r} W_{r-j} \exp\left(\frac{u_j}{\sigma_r}\right) \right]^{\frac{\sigma_r}{\delta} - 1} W_{r-a} \exp\left(\frac{u_a}{\sigma_r}\right) = \sum_{r=a}^{a+M} q(a|r) \ Q(r)$$
 (39)

where:

$$q(a|r) = \frac{W_{r-a} \exp(u_a/\sigma_r)}{\sum_{j \in B_r} W_{r-j} \exp(u_j/\sigma_r)} = \frac{\exp(u_a/\sigma_r)}{\exp(\ln U_r/\sigma_r)}$$

$$Q(r) = \frac{\exp(\ln U_r/\delta)}{\sum_{j=1}^{J+M} \exp(\ln U_j/\delta)} = \frac{\exp(\ln U_r/\delta)}{U}$$
(40)

5.4 Conditional choice expected utilities

As shown in general, $e(a, \mathbf{u}) = S(\mathbf{u})$. This implies that $\mathbb{E}(\varepsilon_a \mid u, a^* = a) = S(\mathbf{u}) - u_a$. Given that for the OGEV model $S(\mathbf{u}) = \delta(\ln U + \gamma)$ we have that:

$$\mathbb{E}(\varepsilon_a|u, a^* = a) = \delta\gamma + \delta \ln U - u_a \tag{41}$$

References

Anderson, S. P., A. De Palma, and J.-F. Thisse (1992): Discrete choice theory of product differentiation. MIT press.

MCFADDEN, D. (1974): "Conditional logit analysis of qualitative choice behavior," in Frontiers in Econometrics, P. Zarembka (ed.) Academic Press: New York, pp. 105–142.